QwQ-32B

模型描述

QwQ-32B is a medium-sized reasoning model from the Qwen series, optimized for enhanced performance in downstream tasks, particularly challenging problems requiring deep reasoning. Unlike conventional instruction-tuned models, QwQ-32B integrates advanced architectural components such as RoPE, SwiGLU, RMSNorm, and Attention QKV bias. With 64 layers, 40 query heads, and 8 key-value heads (GQA), it supports a full 131,072-token context length, though YaRN must be enabled for prompts exceeding 8,192 tokens. Pretrained and post-trained via supervised finetuning and reinforcement learning, it achieves competitive results against leading models like DeepSeek-R1 and o1-mini. Users can explore its capabilities via QwenChat or refer to official resources for deployment guidelines.

🔔如何使用

graph LR A("Purchase Now") --> B["Start Chat on Homepage"] A --> D["Read API Documentation"] B --> C["Register / Login"] C --> E["Enter Key"] D --> F["Enter Endpoint & Key"] E --> G("Start Using") F --> G style A fill:#f9f9f9,stroke:#333,stroke-width:1px style B fill:#f9f9f9,stroke:#333,stroke-width:1px style C fill:#f9f9f9,stroke:#333,stroke-width:1px style D fill:#f9f9f9,stroke:#333,stroke-width:1px style E fill:#f9f9f9,stroke:#333,stroke-width:1px style F fill:#f9f9f9,stroke:#333,stroke-width:1px style G fill:#f9f9f9,stroke:#333,stroke-width:1px

点击购买

点击首页立即对话

注册 / 登录

输入key

阅读API文档

输入端点和API Key

开始使用

全文结束

推荐模型

DeepGemini-2.5-pro

DeepSeek-R1 + gemini-2.5-pro-preview-03-25,Deep 系列由 DeepSeek-R1(671b)模型与其他模型的思维链推理相结合,充分利用 DeepSeek 思维链的强大能力。它采用利用其他更强大模型进行补充的策略,从而增强整体模型的能力。

gpt-4o-mini-rev

使用逆向工程在官方应用程序中调用模型并将其转换为 API。

gpt-4.1-nano

GPT-4.1 nano 是最快、最具性价比的 GPT-4.1 模型。