QwQ-32B

模型描述

QwQ-32B is a medium-sized reasoning model from the Qwen series, optimized for enhanced performance in downstream tasks, particularly challenging problems requiring deep reasoning. Unlike conventional instruction-tuned models, QwQ-32B integrates advanced architectural components such as RoPE, SwiGLU, RMSNorm, and Attention QKV bias. With 64 layers, 40 query heads, and 8 key-value heads (GQA), it supports a full 131,072-token context length, though YaRN must be enabled for prompts exceeding 8,192 tokens. Pretrained and post-trained via supervised finetuning and reinforcement learning, it achieves competitive results against leading models like DeepSeek-R1 and o1-mini. Users can explore its capabilities via QwenChat or refer to official resources for deployment guidelines.

🔔如何使用

graph LR A("Purchase Now") --> B["Start Chat on Homepage"] A --> D["Read API Documentation"] B --> C["Register / Login"] C --> E["Enter Key"] D --> F["Enter Endpoint & Key"] E --> G("Start Using") F --> G style A fill:#f9f9f9,stroke:#333,stroke-width:1px style B fill:#f9f9f9,stroke:#333,stroke-width:1px style C fill:#f9f9f9,stroke:#333,stroke-width:1px style D fill:#f9f9f9,stroke:#333,stroke-width:1px style E fill:#f9f9f9,stroke:#333,stroke-width:1px style F fill:#f9f9f9,stroke:#333,stroke-width:1px style G fill:#f9f9f9,stroke:#333,stroke-width:1px
全文结束

推荐模型

gpt-4.1-nano-2025-04-14

GPT-4.1 nano 是最快、最具性价比的 GPT-4.1 模型。

DeepSeek-R1

与 OpenAI-o1 相当的性能,完全开源模型和技术报告,代码和模型在 MIT 许可证下发布:自由提炼和商业化。

QwQ-32B

QwQ-32B 是 Qwen 系列中的一个 32.5B 参数推理模型,具有先进的架构和 131K 令牌上下文长度,旨在在复杂任务中超越像 DeepSeek-R1 这样的最先进模型。