bge-m3

模型描述

BGE-M3 stands out for its Multi-Functionality (simultaneous dense, sparse, and multi-vector retrieval), Multi-Linguality (100+ languages), and Multi-Granularity (up to 8,192-token documents). It enhances retrieval pipelines by enabling hybrid retrieval (e.g., combining dense embeddings with BM25-like sparse weights) and re-ranking for higher accuracy. The model integrates seamlessly with tools like Vespa and Milvus, and its unified fine-tuning supports diverse retrieval methods. Recent updates include improved MIRACL benchmark performance and multilingual long-document datasets (MLDR).

🔔如何使用

graph LR A("Purchase Now") --> B["Start Chat on Homepage"] A --> D["Read API Documentation"] B --> C["Register / Login"] C --> E["Enter Key"] D --> F["Enter Endpoint & Key"] E --> G("Start Using") F --> G style A fill:#f9f9f9,stroke:#333,stroke-width:1px style B fill:#f9f9f9,stroke:#333,stroke-width:1px style C fill:#f9f9f9,stroke:#333,stroke-width:1px style D fill:#f9f9f9,stroke:#333,stroke-width:1px style E fill:#f9f9f9,stroke:#333,stroke-width:1px style F fill:#f9f9f9,stroke:#333,stroke-width:1px style G fill:#f9f9f9,stroke:#333,stroke-width:1px
全文结束

推荐模型

o3-2025-04-16

我们最强大的推理模型,在编码、数学、科学和视觉方面表现出色。

DeepSeek-V3-0324

深度寻求-V3-0324 是一个升级的人工智能模型,具有增强的推理、编码、中文写作和网络搜索能力,在某些任务中超越了 GPT-4.5,同时保持 128K 上下文支持和开源 MIT 许可。

o4-mini-2025-04-16

我们更快、成本效益高的推理模型在数学、编码和视觉方面表现出色。