bge-m3

模型描述

BGE-M3 stands out for its Multi-Functionality (simultaneous dense, sparse, and multi-vector retrieval), Multi-Linguality (100+ languages), and Multi-Granularity (up to 8,192-token documents). It enhances retrieval pipelines by enabling hybrid retrieval (e.g., combining dense embeddings with BM25-like sparse weights) and re-ranking for higher accuracy. The model integrates seamlessly with tools like Vespa and Milvus, and its unified fine-tuning supports diverse retrieval methods. Recent updates include improved MIRACL benchmark performance and multilingual long-document datasets (MLDR).

🔔如何使用

graph LR A("Purchase Now") --> B["Start Chat on Homepage"] A --> D["Read API Documentation"] B --> C["Register / Login"] C --> E["Enter Key"] D --> F["Enter Endpoint & Key"] E --> G("Start Using") F --> G style A fill:#f9f9f9,stroke:#333,stroke-width:1px style B fill:#f9f9f9,stroke:#333,stroke-width:1px style C fill:#f9f9f9,stroke:#333,stroke-width:1px style D fill:#f9f9f9,stroke:#333,stroke-width:1px style E fill:#f9f9f9,stroke:#333,stroke-width:1px style F fill:#f9f9f9,stroke:#333,stroke-width:1px style G fill:#f9f9f9,stroke:#333,stroke-width:1px

点击购买

点击首页立即对话

注册 / 登录

输入key

阅读API文档

输入端点和API Key

开始使用

全文结束

推荐模型

QwQ-32B

QwQ-32B 是 Qwen 系列中的一个 32.5B 参数推理模型,具有先进的架构和 131K 令牌上下文长度,旨在在复杂任务中超越像 DeepSeek-R1 这样的最先进模型。

claude-3-7-sonnet-20250219

Claude 3.7 Sonnet 是 Anthropic 迄今为止最先进的混合推理模型,结合了即时响应和用户控制的扩展思维,在编码、数学和现实世界任务中表现出色。

DeepSeek-R1

与 OpenAI-o1 相当的性能,完全开源模型和技术报告,代码和模型在 MIT 许可证下发布:自由提炼和商业化。