bge-m3

模型描述

BGE-M3 stands out for its Multi-Functionality (simultaneous dense, sparse, and multi-vector retrieval), Multi-Linguality (100+ languages), and Multi-Granularity (up to 8,192-token documents). It enhances retrieval pipelines by enabling hybrid retrieval (e.g., combining dense embeddings with BM25-like sparse weights) and re-ranking for higher accuracy. The model integrates seamlessly with tools like Vespa and Milvus, and its unified fine-tuning supports diverse retrieval methods. Recent updates include improved MIRACL benchmark performance and multilingual long-document datasets (MLDR).

全文结束

推荐模型

DeepSeek-R1-all

与 OpenAI-o1 相当的性能,完全开源模型和技术报告,代码和模型在 MIT 许可证下发布:自由提炼和商业化。

gpt-4.1-nano

GPT-4.1 nano 是最快、最具性价比的 GPT-4.1 模型。

gpt-4o-mini-rev

使用逆向工程在官方应用程序中调用模型并将其转换为 API。