bge-m3

模型描述

BGE-M3 stands out for its Multi-Functionality (simultaneous dense, sparse, and multi-vector retrieval), Multi-Linguality (100+ languages), and Multi-Granularity (up to 8,192-token documents). It enhances retrieval pipelines by enabling hybrid retrieval (e.g., combining dense embeddings with BM25-like sparse weights) and re-ranking for higher accuracy. The model integrates seamlessly with tools like Vespa and Milvus, and its unified fine-tuning supports diverse retrieval methods. Recent updates include improved MIRACL benchmark performance and multilingual long-document datasets (MLDR).

🔔如何使用

graph LR A("Purchase Now") --> B["Start Chat on Homepage"] A --> D["Read API Documentation"] B --> C["Register / Login"] C --> E["Enter Key"] D --> F["Enter Endpoint & Key"] E --> G("Start Using") F --> G style A fill:#f9f9f9,stroke:#333,stroke-width:1px style B fill:#f9f9f9,stroke:#333,stroke-width:1px style C fill:#f9f9f9,stroke:#333,stroke-width:1px style D fill:#f9f9f9,stroke:#333,stroke-width:1px style E fill:#f9f9f9,stroke:#333,stroke-width:1px style F fill:#f9f9f9,stroke:#333,stroke-width:1px style G fill:#f9f9f9,stroke:#333,stroke-width:1px

点击购买

点击首页立即对话

注册 / 登录

输入key

阅读API文档

输入端点和API Key

开始使用

全文结束

推荐模型

o3-2025-04-16

我们最强大的推理模型,在编码、数学、科学和视觉方面表现出色。

DeepClaude-3-7-sonnet

DeepSeek-R1 + claude-3-7-sonnet-20250219,Deep 系列由 DeepSeek-R1(671b)模型与其他模型的思维链推理相结合而成,充分利用了 DeepSeek 思维链的强大能力。它采用了一种利用其他更强大模型进行补充的策略,从而增强了整体模型的能力。

gpt-4o-mini-rev

使用逆向工程在官方应用程序中调用模型并将其转换为 API。